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Quasistatic calculation of linear response for crack propagation

Hiizu Nakanishi
Department of Physics, Kyushu University 33, Fukuoka 812-81, Japan
(Received 7 June 1996

Quasistatic calculation using Mushkelishvili's analytic functions is presented for the linear-response func-
tion of the mode Kopening modgcrack shape to externally applied stress in order to examine the importance
of the detailed structure of the cohesive zone that has been found in the fully dynamical calculation recently
done by Ching, Langer, and NakanigRihys. Rev. 53, 2864(1996)]. It is confirmed that the result does not
reduce to that of Cotterell and Ri¢ént. J. Fract.16, 155 (1980] if the cohesive shear stress is included.
[S1063-651%96)50911-9

PACS numbsgs): 03.40.Dz, 62.20.Mk, 46.30.Nz, 81.40.Np

The stability of crack propagation has attracted much atstable in the conventionally used continuum model, where
tention since the recent experimerits—~4] and numerical the simple cohesive stress with only a normal component is
simulations[5—8] that showed that straight crack propaga-assumed, and the crack tends to deviate strongly in the length
tion becomes unstable when the crack speed reaches a cecale of the cohesive zone for any crack speed, and(ii)
tain critical value. It has been noted by Yoffe that therethe shear component of the cohesive stress plays an impor-
should be such an instability because the angular dependentamnt role in the stability.
of the diverging part of stress around the crack tip has a Their results suggest that the stability depends on the de-
maximum amplitude about 60° away from the direction intailed structure of the cohesive zone, which seems to conflict
which the crack is moving when the crack speed exceedwith the traditional idea that crack propagation can be ana-
about 60% of the Rayleigh speed. This, however, does ndyzed by examining the field only outside the crack tip zone
prove the existence of the instability because the analysis isnder the assumption that the microscopic details can be put
not about the actual stress around the crack tip, but onlynto a few phenomenological parameters such as surface en-
about the diverging part of the stress, and the crack motion isrgy.
not examined dynamically in the way that the crack path can Their results also present a problem when one compares it
be calculated. with the calculation by CR9] since CR ignored the size of

The stability of straight crack propagation has been anathe cohesive zone in their analysis, but CLN's result of the
lyzed in the quasistatic limit by Cotterell and Ri¢€R) [9]. response functiornyy(m,v) with the central cohesive stress
They employed the continuum model without a cohesivehas a singularity at the crack speee-0 and the size of
zone; thus the stress diverges at the crack tip in the modetohesive zoné=0:

They determined the crack path using the condition that the

shear component of the stress intensity factor should be zero

and derived the criterion that straight crack propagation be- 1 _ ) 3,2(1—1/:<)z)2/2+ iml/2
comes unstable when the nondivergent component of tangen- Xy (M.v)~ ﬁ( im) (1—Ux)o22—iml
tial stressT around the crack tip becomes positive. The crack

pathY(x) was predicted as

forv,ml<1, (2)
(for T>0)

2
ex
Y(x)~ F{WM @ wherem and i
x are the wave number of the perturbation and
\/M (for T<0) a material parameter given by the square of the ratio of the
longitudinal wave speed to the transverse wave speed
for x<0 when the crack propagating in thex direction  «=(c,/c,)?, respectively.(The extra factor 1/g2 comes
deviates from the straight pathat0; K denotes the stress from the definition of the stress intensity faciorhus, if one
intensity factor for mode I. Qualitatively similar results were assumes the cohesive zone with finite size, the quasistatic
reproduced by Adda-Bedia and Amdr0] recently. limit is different from the case where one neglects the size of
On the other hand, Ching, Langer, and Nakani§tiN)  the cohesive zone from the beginning. It is very difficult,
[11] recently performed fully dynamical analysis on the con-however, to compare those two calculations directly because
tinuum model, but with the cohesive zone, which is to sup-CLN'’s calculation is fully dynamic and mathematically very
press the unphysical divergence of the stress around theomplicated, and is very different from CR’s.
crack tip. For this system, stationary solutions of straight The purpose of this report is to present a CR-type calcu-
crack propagation had been obtained by Langer and Nakaration for the model with the cohesive zone and to see if one
ishi [12] and Ching[13], and CLN calculated its linear re- can reproduce CLN'’s results by means of a completely dif-
sponse of the crack shape to the external shear stress. Thigyent method. By doing this, one can see the relationship
showed thati) the straight crack propagation is always un- between the two calculations.
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Using Mushkelishvili's analytic function§l5], the two-

dimensional displacement fieﬁjz(u,v) and the stress field y y
2ij=0ij/l2n are expressed as Y
X
) k+1 - —_— 0 0
u(xy) tiv(xy)=-—¢2)-2¢'(2)=¥(2), @ iip x
3(%Y)=Rg2¢'(2) —2¢"(2)— ¢/ (2)], 4
Sy (X.Y)=Reg2¢'(2)+2¢"(2) + ¢'(2)], ©) FIG. 1. Thex®-y° coordinate fixed to the material and they

coordinate moving with the crack tip.

Sy (x,y)=Im[z¢"(2)+ ' (2)], (6)

where ¢(z) and ¥(z) are analytic functions witlz=x+iy
and u is a shear modulus. To study the crack propagation,
we consider the situation where the material is being pulled bi(2)= —1 I (S —S0) —

Thus we have fokby(z) and iq(2)

iy

by the stress tensor

2. 0 ) VI—i-z
2= 7 +iZgln| ———=—] 1, 11
( 0 S ) '2°n<ﬁ+i\/—z v
at infinity. For a technical reason, in the following calcula- Uh(2)=—2L(2). (12)

tion we consider the situation where3., is acting on the

crack surface to cancel the stre§S at infinity, which is By examining the stress field around the crack tip in the

eq?évilﬁjr:rt?otgioﬁgogs i'ti?;::ln d\xgrrm:a:;ee I:;e;;:slzsgflz regionl <|z| <L, the stress intensity factdt in the present
phy 9 Situation is obtained as

crack tip, we introduce the simple cohesive zone with the

constant stres¥, the range of the stres$ and the linear 5

sizel, which gives the surface energy= 6% ,. We will see K=2 \[\/— P

that Griffith’s condition[14] for cracking and the response

function for the crack shape can be derived from the condi-

tion that the stress should not diverge at the crack tip. and the no-stress-divergence conditidd) is expressed as
(i) Zeroth-order calculationLet us first consider the case

where the straight crack is along the positive part of the real \/EKZZ\/I— s

axis without the external shear perturbatighe zeroth or- 0

den. Then the boundary condition for the normal stress

ER,O(X) and the shear stre§§o(x) along the crack surface is The half of the crack openingy(x) defined as

(13

(14

306X = =S O(L—X)+300(1—X), 3%(x)=0, Upn(X)=u(x,y=+0) (15)

€S)
should satisfy the matching conditidty(1)=&. This rela-

where 6(x) is the step function and the length scaleis  (jon allows us to express the no-divergence conditb in
introduced to avoid the infinite stress intensity factbr. ine form of Irwin's criterion[16]

roughly corresponds to the width of the stripe in a real situ-

ation, but it is more convenient to replace it with the stress k—1
intensity factorK, as we will do in the following. Then, the K2= (16)
zeroth-order analytic functioghy(z) is given by
which is equivalent to Griffith’s conditiofil4]. In the small-
bo(2)= —— f dt 2 Ro(t) x limit, the zeroth-order crack openirgdyo(X) is given by
27—
32 32
[ i |nﬁ_i‘/_z+i 2\L uNo(x)~§5<|—> EUNO(I—) for x<I, (17
- = = ol =
2 N JL+iV-2z V-2
which we will use later.
s \/_—l —Z _ 2\/|_ ©) (i) First-order calculation. Now we apply perturbation
0 \/’+| [—7 +im [—7 gox(X) In the shear stress on the crack surface and examine

the response of the crack payh=Y(x) within the linear
The condition of no stress divergence tells us that th@pproxmatlon We introduce two coordinate systems: the

coefficient of 14/— z should be zero: x9-y? system that is fixed to the material and the system
that is moving with the crack and its origin is located at the

VL3 =l 3. (10)  crack tip(Fig. 1), and we assume
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Eax(X)= Re[gmeim(xﬂﬁp)L where E,=imAS..Y,+2n,. Thus the response function
xy(m) is given by
Y(x)=Re Y, (€M™~ 1)eMp], (18) K\ em_q
X7 M= ST = imAT.+ (V7T )( ,
wherex; is thex® coordinate of the crack tip in the’-y° Y Ym 2/ imi
system. The normal and tangential vectors to the crack sur- (26)

face are given b . . Lo -
9 y where we have inserted the minus sign in the definition of

R (—Y'(x),1) ) (LY (%)) xy(m) in order to.make a _connection with CLN, w.hich_
n(x)= ———, X)=——u-——r. (19 comes from the difference in the way the perturbation is
V1+Y'(x)? V1+Y'(x)? imposed. In the work of CLN, the perturbation is ahead of

the crack, while it is on the crack surface in the present
Thus the boundary conditions for the normal and the shea§a|cu|at|on It can be shown thés.21) of CLN without the
stress along the crack surface up to the lineaY iare D, term reduces t626) in thev =0 limit. The expression in

.. theml—0 limit,
SP(x)=—(n="n) (L—x)+3¢ 8(1—X)

= =S O(L—X)+3g 0(1—X) =ZRo(X), Xgl(m)w—imAEOﬁ(m)s(L), (27)
2\2
(20)
gives CR’s result if one notes thatAZ,,, corresponds td
gl(x)= —(NZ7t) O(L—X)+ & X)+ s O(1—X) stress of CR’s papd®] in the present configuration.
(b) The case with shear stregéow we suppose the shear
=—AZ,Y'(X) O(L=X)+eex(X)+Zcs 6(1—X), part of the cohesive force is nonzero and given by
21
@ - Us(X) )
whereAS, =3 .. — 31, and3 s is the shear component of ZesX)=% X 1G(0)| (1+p);

the cohesive stress, which we will discuss later.
In order to obtain the boundary condition for the first- Un(x)
order functions¢,(z) and ¢,(z), we need to subtract from S on(X) =3 ( Jx) ) =N , (28)
Egs. (20) and (21) the stress that is induced by the zeroth- [U(x)]
order solution along the crack surfaceyat Y(x):

whereU¢(x) andU(x) are the shear and the normal part of

Eﬂn(x,Y(x))~Eﬂ1(x), the crack opening. In the case @£ 0, the cohesive stress is
“central force.”
2? (X,Y(x))~—2Rd #}}(x, +0)] Y(x) (22) Then we have, for the nondivergence condition(26),
n 1 ) .

3 = 1 11
Thus Ov(l ZIAS. Y (1) — - = =
\/— \/|—Y( )+j0 dt\/f[ 2..Y (t) Sex(t)] J’O\/Ezcs(t) (2(;)
— o0 t
$1(2)= —277\/'—_2 fo dt—z_t[221<t>—2?n<t>]

and ¢4(z) becomes

v iv— 3oY() @AY Y (1) —eey(t)
“om = | o¥(h= f ‘“ $1(2)=—— |, dt -
@O0 o (z=\t
x[AEwa(t)—aex(t)] +f N S.4(1) 1 0
| t
+J dtﬂﬁcs(t)} , 23 0 (z-OMt
oz
In the first order ofe,, = .4(X) should have the form
(2)=—2¢7(2)—2¢1(2), 24 . .
i(2)=—24}(2)— 2}(2) (24) S ()= o) D
y:r(;r:;/ve have taken tHe— limit when the integral con- Then (29) gives
(a) The case without shear stregsrst, we consider the - imi_ 1
case without shear cohesidn;s=0. Then, the condition of ,__(\/T) e-
no stress divergence i23) gives \/— iml
E 2 em—_1 2\/_ 1 _[ 2 UcSlm
m_ i3 Noe — it =0. 32
~——( . =0, 2 te (32)
T, TN T = i miJo 2
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o.s1m Can be eliminated by usin@8), where the shear part term with the factork when we consider the instability of
of the crack openind) 5(x) defined by the wave numbems1/L because&K ~ L3 .. .
1 (iii) The present calculation is quasistatic and corresponds
- - ° to thev =0 limit of the dynamical resul{2). Thus, in the
Us(X)==z[u(X,Y(X)+0)—u(x,Y(x)—0)]-t 33 . . .
s(x) 2[ % Y(x)+0)=ux,Y() ~0)] 33 p=0 case, thenl=0 limit of (35) gives the result obtained
from (2) by taking them/'=0 Ilimit after taking thev =0

can be estimated up to the first order fox| as limit. It should be noted that this gives a result different from

1 2k 1 /X (27) for the case without shear cohesion, or CR’s case.
Ua(0)=5-—7 I—\/I:{[(eim'—l)(l—Ziml)—imI] (iv) The results with and without shear cohesion have
™K very different physical contents for genegal From (27) of
X209m+2|eim|&mm}eimxgp, (34) the no-shear-cohesion case, the stability appears to be con-

trolled by A3, ., or T stress, while the resulB5) with shear
using (30) and (11). From (32), (28), (17), and (34), we  cohesion shows that the straight crack propagation is
obtain the expression strongly unstable with the length scdldor p<<0, namely,
. for the case where the shear cohesion is weaker than the
K |[e™-1 normal cohesion. This is a contradiction because the no-
m iml shear-cohesion case should be included in the pase. It
can be shown numerically, however, that the dynamical re-
2em—(e™-1)/iml-1 1 sult xy(m,v) in the no-shear-cohesion case, namély21)
1-e™(1+p) Jmi in the work of CLN without theD, term, has an unstable
pole that goes to infinity as —0. This suggests that the
v =0 limit is singular in the case without shear cohesion and
the quasistatic calculation cannot determine the stability cor-

Xy H(m)=—imA3 +(y—im)3

Jyml )
xf dt € (1+p)
0

rectly.
_ K \imli2—p (v) On the other hand, in the>0 case, Eq(35) shows
~(y—im)3 202 “imi—p for ml,p<1, stability in the microscopic length scale. Thus, in certain

situations the expressio85) in the smallml limit is an
(35 appropriate one and it would predict the same trajectory with
(27) in the macroscopic level.

In summary, the CR-type calculation ignoring the cohe-
sive zone can only determine the macroscopic stability pro-
vided the system is microscopically stable and the micro-
scopic stability depends on the detailed structure of the
cohesive zone. The ordinary model with only the normal
cohesive stress is microscopically unstable and one way to
achieve the microscopic stability is stronger cohesive shear

where we have ignored thes,.. term in the last expression.
This agrees exactly with{5.11) of CLN when (7.8) and
(7.11) are estimated in the —0 limit but all in order of
ml.

There are several remarks on the res(®§), (27), and
(35).

(i) The stability of straight crack propagation can be de-
termined by the pole oky(m) in the complexm plane. If
there is a pole in the upper half plane, the system is unstablé,tress'
if xy(m) is analytic in the upper half plane, it is stable. This work is a part of a project that is being done in close

(i) In these expressions ofy *(m), the first term that collaboration with J.S. Langer and E.S.C. Ching, whom the
containsA 2., can be ignored in comparison with the secondauthor thanks for stimulating discussions.
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