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Quasistatic calculation using Mushkelishvili’s analytic functions is presented for the linear-response func-
tion of the mode I~opening mode! crack shape to externally applied stress in order to examine the importance
of the detailed structure of the cohesive zone that has been found in the fully dynamical calculation recently
done by Ching, Langer, and Nakanishi@Phys. Rev. E53, 2864~1996!#. It is confirmed that the result does not
reduce to that of Cotterell and Rice@Int. J. Fract.16, 155 ~1980!# if the cohesive shear stress is included.
@S1063-651X~96!50911-6#

PACS number~s!: 03.40.Dz, 62.20.Mk, 46.30.Nz, 81.40.Np

The stability of crack propagation has attracted much at-
tention since the recent experiments@1–4# and numerical
simulations@5–8# that showed that straight crack propaga-
tion becomes unstable when the crack speed reaches a cer-
tain critical value. It has been noted by Yoffe that there
should be such an instability because the angular dependence
of the diverging part of stress around the crack tip has a
maximum amplitude about 60° away from the direction in
which the crack is moving when the crack speed exceeds
about 60% of the Rayleigh speed. This, however, does not
prove the existence of the instability because the analysis is
not about the actual stress around the crack tip, but only
about the diverging part of the stress, and the crack motion is
not examined dynamically in the way that the crack path can
be calculated.

The stability of straight crack propagation has been ana-
lyzed in the quasistatic limit by Cotterell and Rice~CR! @9#.
They employed the continuum model without a cohesive
zone; thus the stress diverges at the crack tip in the model.
They determined the crack path using the condition that the
shear component of the stress intensity factor should be zero
and derived the criterion that straight crack propagation be-
comes unstable when the nondivergent component of tangen-
tial stressT around the crack tip becomes positive. The crack
pathY(x) was predicted as

Y~x!;H expF8T2K2 uxuG ~for T.0!

Auxu ~for T,0!

~1!

for x,0 when the crack propagating in the2x direction
deviates from the straight path atx50; K denotes the stress
intensity factor for mode I. Qualitatively similar results were
reproduced by Adda-Bedia and Amar@10# recently.

On the other hand, Ching, Langer, and Nakanishi~CLN!
@11# recently performed fully dynamical analysis on the con-
tinuum model, but with the cohesive zone, which is to sup-
press the unphysical divergence of the stress around the
crack tip. For this system, stationary solutions of straight
crack propagation had been obtained by Langer and Nakan-
ishi @12# and Ching@13#, and CLN calculated its linear re-
sponse of the crack shape to the external shear stress. They
showed that~i! the straight crack propagation is always un-

stable in the conventionally used continuum model, where
the simple cohesive stress with only a normal component is
assumed, and the crack tends to deviate strongly in the length
scale of the cohesive zone for any crack speedv.0, and~ii !
the shear component of the cohesive stress plays an impor-
tant role in the stability.

Their results suggest that the stability depends on the de-
tailed structure of the cohesive zone, which seems to conflict
with the traditional idea that crack propagation can be ana-
lyzed by examining the field only outside the crack tip zone
under the assumption that the microscopic details can be put
into a few phenomenological parameters such as surface en-
ergy.

Their results also present a problem when one compares it
with the calculation by CR@9# since CR ignored the size of
the cohesive zone in their analysis, but CLN’s result of the
response functionxY(m,v) with the central cohesive stress
has a singularity at the crack speedv50 and the size of
cohesive zonel50:

xY
21~m,v !'

K

2A2
~2 im!3/2

~121/k!v2/21 iml/2

~121/k!v2/22 iml

for v,ml!1, ~2!

wherem andk are the wave number of the perturbation and
a material parameter given by the square of the ratio of the
longitudinal wave speed to the transverse wave speed
k5(cl /ct)

2, respectively.~The extra factor 1/2A2 comes
from the definition of the stress intensity factor.! Thus, if one
assumes the cohesive zone with finite size, the quasistatic
limit is different from the case where one neglects the size of
the cohesive zone from the beginning. It is very difficult,
however, to compare those two calculations directly because
CLN’s calculation is fully dynamic and mathematically very
complicated, and is very different from CR’s.

The purpose of this report is to present a CR-type calcu-
lation for the model with the cohesive zone and to see if one
can reproduce CLN’s results by means of a completely dif-
ferent method. By doing this, one can see the relationship
between the two calculations.
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Using Mushkelishvili’s analytic functions@15#, the two-
dimensional displacement fielduW [(u,v) and the stress field
S i j[s i j /2m are expressed as

u~x,y!1 iv~x,y!5
k11

k21
f~z!2z f8~z!2c~z!, ~3!

Sxx~x,y!5Re@2f8~z!2 z̄f9~z!2c8~z!#, ~4!

Syy~x,y!5Re@2f8~z!1 z̄f9~z!1c8~z!#, ~5!

Sxy~x,y!5Im@ z̄f9~z!1c8~z!#, ~6!

wheref(z) andc(z) are analytic functions withz5x1 iy
andm is a shear modulus. To study the crack propagation,
we consider the situation where the material is being pulled
by the stress tensor

S`[S ST` 0

0 SN`
D ~7!

at infinity. For a technical reason, in the following calcula-
tion we consider the situation where2S` is acting on the
crack surface to cancel the stress~7! at infinity, which is
equivalent to the above situation within the linear elasticity.

In order to avoid unphysical divergence of stress at the
crack tip, we introduce the simple cohesive zone with the
constant stressS0, the range of the stressd, and the linear
size l , which gives the surface energyg5dS0. We will see
thatGriffith’s condition @14# for cracking and the response
function for the crack shape can be derived from the condi-
tion that the stress should not diverge at the crack tip.

(i) Zeroth-order calculation.Let us first consider the case
where the straight crack is along the positive part of the real
axis without the external shear perturbation~the zeroth or-
der!. Then the boundary condition for the normal stress
SN0
b (x) and the shear stressSS0

b (x) along the crack surface is

SN0
b ~x!52SN`u~L2x!1S0u~ l2x!, SS0

b ~x!50,
~8!

where u(x) is the step function and the length scaleL is
introduced to avoid the infinite stress intensity factor.L
roughly corresponds to the width of the stripe in a real situ-
ation, but it is more convenient to replace it with the stress
intensity factorK, as we will do in the following. Then, the
zeroth-order analytic functionf0(z) is given by

f08~z!5
1

2pA2z
E
0

`

dt
At
z2t

SN0
b ~ t !

52
1

2p H SN`F2 i S lnAL2 iA2z

AL1 iA2z
1 ip D 2

2AL
A2z

G
2S0F2 i S lnAl2 iA2z

Al1 iA2z
1 ip D 2

2Al
A2z

G J . ~9!

The condition of no stress divergence tells us that the
coefficient of 1/A2z should be zero:

ALSN`5Al S0 . ~10!

Thus we have forf0(z) andc0(z)

f08~z!5
21

2p H p~SN`2S0!2 iSN`lnS AL2 iA2z

AL1 iA2z
D

1 iS0lnS Al2 iA2z

Al1 iA2z
D J , ~11!

c08~z!52zf09~z!. ~12!

By examining the stress field around the crack tip in the
region l!uzu!L, the stress intensity factorK in the present
situation is obtained as

K52A2

p
AL SN` ~13!

and the no-stress-divergence condition~10! is expressed as

Ap

2
K52Al S0 . ~14!

The half of the crack openingUN(x) defined as

UN~x![u~x,y510! ~15!

should satisfy the matching conditionUN( l )5d. This rela-
tion allows us to express the no-divergence condition~14! in
the form of Irwin’s criterion@16#

K254
k21

k
g, ~16!

which is equivalent to Griffith’s condition@14#. In the small-
x limit, the zeroth-order crack openingUN0(x) is given by

UN0~x!'
2

3
dS xl D

3/2

[ŪN0S xl D
3/2

for x! l , ~17!

which we will use later.
(ii) First-order calculation.Now we apply perturbation

«ex(x) in the shear stress on the crack surface and examine
the response of the crack pathy5Y(x) within the linear
approximation. We introduce two coordinate systems: the
x0-y0 system that is fixed to the material and thex-y system
that is moving with the crack and its origin is located at the
crack tip ~Fig. 1!, and we assume

FIG. 1. Thex0-y0 coordinate fixed to the material and thex-y
coordinate moving with the crack tip.
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«ex~x!5Re@ «̂me
im~x1xtip

0
!#,

Y~x!5Re@Ŷm~eimx21!eimxtip
0

#, ~18!

wherextip
0 is thex0 coordinate of the crack tip in thex0-y0

system. The normal and tangential vectors to the crack sur-
face are given by

nW ~x![
„2Y8~x!,1…

A11Y8~x!2
, tW~x![

„1,Y8~x!…

A11Y8~x!2
. ~19!

Thus the boundary conditions for the normal and the shear
stress along the crack surface up to the linear inY are

SN1
b ~x!52~nW S`nW ! u~L2x!1S0 u~ l2x!

52SN` u~L2x!1S0 u~ l2x!5SN0
b ~x!,

~20!

SS1
b ~x!52~nW S` tW ! u~L2x!1«ex~x!1ScS u~ l2x!

52DS`Y8~x! u~L2x!1«ex~x!1ScS u~ l2x!,

~21!

whereDS`[SN`2ST` andScS is the shear component of
the cohesive stress, which we will discuss later.

In order to obtain the boundary condition for the first-
order functionsf1(z) andc1(z), we need to subtract from
Eqs. ~20! and ~21! the stress that is induced by the zeroth-
order solution along the crack surface aty5Y(x):

Snn
0
„x,Y~x!…'SN1

b ~x!,

S tn
0
„x,Y~x!…'22Re@f09~x,10!# Y~x!. ~22!

Thus

f18~z!5
2 i

2pA2z
E
0

`

dt
At
z2t

@SS1
b ~ t !2S tn

0 ~ t !#

5
2 i

2pA2z
F2

Al
z2 l

S0Y~ l !2E
0

`

dt
At
z2t

3@DS`Y8~ t !2«ex~ t !#

1E
0

l

dt
At
z2t

ScS~ t !G , ~23!

c18~z!52zf19~z!22f18~z!, ~24!

where we have taken theL→` limit when the integral con-
verges.

(a) The case without shear stress.First, we consider the
case without shear cohesion:ScS50. Then, the condition of
no stress divergence in~23! gives

Êm

Ŷm

2~A2 im!3AL
SN`

Ap

eiml21

iml
50, ~25!

where Êm[ imDS`Ŷm1 «̂m . Thus the response function
xY(m) is given by

xY
21~m![2

«̂m

Ŷm

52 imDS`1~A2 im!3S K

2A2D eiml21

iml
,

~26!

where we have inserted the minus sign in the definition of
xY(m) in order to make a connection with CLN, which
comes from the difference in the way the perturbation is
imposed. In the work of CLN, the perturbation is ahead of
the crack, while it is on the crack surface in the present
calculation. It can be shown that~5.21! of CLN without the
D̃1 term reduces to~26! in thev50 limit. The expression in
theml→0 limit,

xY
21~m!'2 imDS`1~A2 im!3S K

2A2D , ~27!

gives CR’s result if one notes that2DS` corresponds toT
stress of CR’s paper@9# in the present configuration.

(b) The case with shear stress.Now we suppose the shear
part of the cohesive force is nonzero and given by

ScS~x!5Sc„uUW ~x!u…
US~x!

uUW ~x!u
~11r!;

ScN~x!5Sc„uUW ~x!u…
UN~x!

uUW ~x!u
, ~28!

whereUS(x) andUN(x) are the shear and the normal part of
the crack opening. In the case ofr50, the cohesive stress is
‘‘central force.’’

Then we have, for the nondivergence condition in~23!,

S0

Al
Y~ l !1E

0

`

dt
1

At
@DS`Y8~ t !2«ex~ t !#2E

0

l 1

At
ScS~ t !50

~29!

andf1(z) becomes

f18~z!5
iA2z

2p F2
S0Y~ l !

~z2l !Al
2E

0

`

dt
DS`Y8~ t !2«ex~ t !

~z2t !At

1E
0

l

dt
ScS~ t !

~z2t !AtG . ~30!

In the first order of«̂m , ScS(x) should have the form

ScS~x!5ŝcS1me
im~x1xtip

0
!. ~31!

Then ~29! gives

Êm

Ŷm

2~A2 im!3S K

2A2D eiml21

iml

2
2Aml

AiAp

1

Aml
E
0

Aml
dt eit

2S ŝcS1m

Ŷm
D 50. ~32!
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ŝcS1m can be eliminated by using~28!, where the shear part
of the crack openingUS(x) defined by

US~x![
1

2
@uW „x,Y~x!10…2uW „x,Y~x!20…#• tW ~33!

can be estimated up to the first order forx! l as

US18 ~x!5
1

2p

2k

k21

1

l
Ax

l
$@~eiml21!~122iml !2 iml#

3S0Ŷm12leimlŝcS1m%eimxtip
0
, ~34!

using ~30! and ~11!. From ~32!, ~28!, ~17!, and ~34!, we
obtain the expression

xY
21~m!52 imDS`1~A2 im!3S K

2A2D S eiml21

iml

1
2eiml2~eiml21!/ iml21

12eiml~11r!

1

Aml

3E
0

Aml
dt eit

2
~11r!D

'~A2 im!3S K

2A2D iml/22r

2 iml2r
for ml,r!1,

~35!

where we have ignored theDS` term in the last expression.
This agrees exactly with~5.11! of CLN when ~7.8! and
~7.11! are estimated in thev→0 limit but all in order of
ml.

There are several remarks on the results~26!, ~27!, and
~35!.

~i! The stability of straight crack propagation can be de-
termined by the pole ofxY(m) in the complexm plane. If
there is a pole in the upper half plane, the system is unstable,
if xY(m) is analytic in the upper half plane, it is stable.

~ii ! In these expressions ofxY
21(m), the first term that

containsDS` can be ignored in comparison with the second

term with the factorK when we consider the instability of
the wave numberm@1/L becauseK;ALSN` .

~iii ! The present calculation is quasistatic and corresponds
to the v50 limit of the dynamical result~2!. Thus, in the
r50 case, theml50 limit of ~35! gives the result obtained
from ~2! by taking theml 50 limit after taking thev50
limit. It should be noted that this gives a result different from
~27! for the case without shear cohesion, or CR’s case.

~iv! The results with and without shear cohesion have
very different physical contents for generalr: From ~27! of
the no-shear-cohesion case, the stability appears to be con-
trolled byDS` , or T stress, while the result~35! with shear
cohesion shows that the straight crack propagation is
strongly unstable with the length scalel for r,0, namely,
for the case where the shear cohesion is weaker than the
normal cohesion. This is a contradiction because the no-
shear-cohesion case should be included in the caser,0. It
can be shown numerically, however, that the dynamical re-
sult xY(m,v) in the no-shear-cohesion case, namely,~5.21!
in the work of CLN without theD̃1 term, has an unstable
pole that goes to infinity asv→0. This suggests that the
v50 limit is singular in the case without shear cohesion and
the quasistatic calculation cannot determine the stability cor-
rectly.

~v! On the other hand, in ther.0 case, Eq.~35! shows
stability in the microscopic length scale. Thus, in certain
situations the expression~35! in the smallml limit is an
appropriate one and it would predict the same trajectory with
~27! in the macroscopic level.

In summary, the CR-type calculation ignoring the cohe-
sive zone can only determine the macroscopic stability pro-
vided the system is microscopically stable and the micro-
scopic stability depends on the detailed structure of the
cohesive zone. The ordinary model with only the normal
cohesive stress is microscopically unstable and one way to
achieve the microscopic stability is stronger cohesive shear
stress.

This work is a part of a project that is being done in close
collaboration with J.S. Langer and E.S.C. Ching, whom the
author thanks for stimulating discussions.
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